Inicio | Noticias | Investigación básica | La secuenciación masiva y la coevolución desvelan secretos de las interacciones entre proteínas humanas

PNAS. La secuenciación masiva y la coevolución desvelan secretos de las interacciones entre proteínas humanas

15.12.2016

Ayúdanos a erradicar el cáncer

El interactoma humano consta de unos 200.000 pares de interacciones proteína-proteína y hasta ahora sólo se entienden unos pocos miles

Investigadores del CNIO han descubierto mediante métodos computacionales que el estudio de la evolución de miles de proteínas de bacterias permite descifrar muchas de las interacciones que se producen entre proteínas humanas

Los resultados permitirán esclarecer detalles moleculares de miles de interacciones potencialmente implicadas en enfermedades como el cáncer

Las células funcionan como una orquesta increíblemente bien sincronizada de interacciones moleculares entre proteínas. Comprender esta red molecular no sólo es esencial para conocer el funcionamiento del organismo sino también para determinar los mecanismos moleculares que conducen a multitud de enfermedades. De hecho, se ha observado que las regiones de las proteínas involucradas en estas interacciones están preferentemente mutadas en muchos tumores. El estudio de muchas de estas interacciones es complejo, pero una investigación coordinada por Simone Marsili y David Juan, del equipo de Alfonso Valencia en el CNIO, permitirá ampliar el conocimiento acerca de miles de ellas. El trabajo, publicado en la revista Proceedings of the National Academy of Sciences (PNAS), demuestra que es posible entender un número importante de interacciones entre proteínas humanas estudiando la evolución de grandes colecciones de secuencias de sus equivalentes en células más simples como las bacterianas.

Según Juan Rodríguez, del Grupo de Biología Computacional Estructural del CNIO y primer firmante del artículo, “la complejidad del ser humano no viene tanto del número de proteínas que tenemos, sino de cómo interactúan entre ellas. Sin embargo, de los 200.000 interacciones proteína-proteína estimados, sólo unos miles están bien caracterizados a nivel molecular”. Para muchas de las interacciones más importantes es muy difícil estudiar sus propiedades moleculares, al carecer de información estructural fiable. Es en esta “zona en penumbra” en la que, por primera vez, los investigadores del CNIO han conseguido adentrarse.

Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:”Table Normal”; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:””; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Calibri; color:black;}

DE BACTERIAS A HUMANOS PARA ENTENDER ENFERMEDADES

Aunque más de 3.000 millones de años de evolución separan a bacterias y humanos, el equipo del CNIO ha logrado aprovechar la información acumulada en miles de secuencias de bacterias utilizando métodos computacionales para predecir interacciones en humanos. “Hemos utilizado el fenómeno de la coevolución entre proteínas: las proteínas que interaccionan tienden a experimentar cambios evolutivos coordinados que mantienen dicha interacción a pesar de la acumulación de mutaciones a lo largo del tiempo”, explica David Juan. “Hemos demostrado que podemos utilizar este fenómeno para detectar detalles moleculares de las interacciones en humanos que compartimos con especies muy lejanas. Lo más interesante es que esto nos permite transferir información desde bacterias para estudiar interacciones en humanos de las que previamente no sabíamos casi nada”, concluye Simone Marsili.

Imagen de la enzima oxidoreductasa

Estos nuevos resultados pueden tener importantes implicaciones para futuras investigaciones. “Conocer mejor estas interacciones abre la puerta a la obtención de modelos tridimensionales útiles para diseñar fármacos dirigidos contra interacciones importantes en distintos tumores”, explica David Juan. “Este conocimiento también puede mejorar nuestras predicciones del efecto de distintas mutaciones asociadas a los procesos tumorales”, añade Rodríguez.  

UNA CIENCIA DE DATOS

El equipo de Alfonso Valencia, que dirige el Programa de Biología Estructural y Biocomputación, trabaja desde los años 90 en esta área de investigación, donde se han producido importantes avances en los últimos años. “Gracias a la cantidad de datos biológicos que se están generando en la actualidad, podemos utilizar nuevos métodos computacionales que tienen en cuenta un mayor número de factores”, explica Valencia. Según los investigadores, debido al ritmo de innovación en técnicas experimentales masivas tenemos cada día más datos que permiten establecer modelos estadísticos más complejos y que arrojan  una visión cada vez más completa de los sistemas biológicos, “algo especialmente importante en enfermedades multifactoriales, como el cáncer”.

Esta investigación ha sido financiada por el Ministerio de Economía y Competitividad y el Fondo Europeo de Desarrollo Regional.

Artículo de referencia

Conservation of coevolving protein interfaces bridges prokaryote–eukaryote homologies in the twilight zone. Juan Rodriguez-Rivas, Simone Marsili, David Juan and Alfonso Valencia (PNAS 2016). DOI: http://dx.doi.org/10.1073/pnas.1611861114

Volver a las noticias

Subir