The Human Cancer Genetics Programme (HCGP) is a translational research programme working on areas related to genetics, genomics, pharmacogenetics, molecular cytogenetics and the environmental bases of human cancer.

The Programme’s interests focus on: (1) identifying new genetic and non-genetic factors related to cancer predisposition and risk in order to guide risk-stratified screening strategies towards personalized cancer prevention and treatment; and (2) understanding the molecular mechanisms involved in cancer to facilitate the development of targeted therapies and early diagnostics.

In 2022, HCGP was composed of 2 Research Groups: Hereditary Endocrine Cancer (HRCG) and Genetic and Molecular Epidemiology (GMEG), and 3 Units: Human Genotyping-CxGEN, Molecular Cytogenetics and the Familial Cancer Clinical Unit. In addition, the Programme includes a Familial Cancer Consultancy for the evaluation of families with cancer and the provision of genetic counselling, which is located at the Hospital Universitario de Fuenlabrada.

The Programme works in close collaboration with the clinical community to foster cooperation in genetic diagnosis and research, and to promote training and education. In 2022, 729 patients visited the Familial Cancer Consultancy at the Hospital de Fuenlabrada, and the HCGP performed 1,884 genetic diagnoses and carried out 2,102 cytogenetic studies. In terms of research, the Programme’s members participated in collaborative studies involving a network of more than 30 hospitals from our National Health System, not only to conduct collaborative studies but also to facilitate clinical translation. The Programme also offers professionals and students from different national and international research centres the opportunity to join, either as visitors or for training visits to different national and international research centres the opportunity to join, either as visitors or for training visits to different Spanish hospitals were hosted in 2022. The Programme’s education activities in 2022 comprised a total of 17 national and 2 international PhD research projects, including the successful defence of 5 doctoral theses.

The Programme has established research collaborations with national and international groups: this is well demonstrated by its publication record as well as the key roles held by several of the Programme’s members in consortia and international projects. In this regard, in 2022, several of the GMEG members, led by Núria Malats, and the European Molecular Biology Laboratory (EMBL) in Heidelberg, led by Peer Bork, in collaboration with the CNIO Epithelial Carcinogenesis Group led by Paco Real, and the CNIO Molecular Cytogenetics Unit led by Sandra Rodríguez-Perales, conducted an international comprehensive study on the influence of the microbiome on pancreatic cancer, published in the prestigious Journal of the American Medical Association (JAMA). Also, especially noteworthy is the contribution of several of the HCGP’s Group members to IMPaCT, an initiative of the Instituto de Salud Carlos III to Promote Precision Medicine in our country.

Milestones and major achievements of the HCGP in 2022 include:

- Mercedes Robledo: Within the field of personalized precision medicine co-funded by NextGenerationEU, “Development and implementation of a functional genomics validation platform for undiagnosed hereditary cancer.”
- Núria Malats: Chairs ALIPANC, the Alliance of Pancreatic Cancer Research in Spain with 50 scientific groups.
- Núria Malats has contributed to (1) the pancreatic cancer field by proposing a high accuracy faecal metagenomic classifier and (2) the methodological field by proposing a new Mendelian randomization to avoid collider bias.
- Anna González-Neira, Javier Benítez, Ana Osorio: Two multicentre studies in breast cancer as a result of the “Breast Cancer Risk after Diagnostic Gene Sequencing” BRIDGES H2020 Project — “Pathology of tumors associated with pathogenic germline variants in 9 breast cancer susceptibility genes” (JAMA Oncology) and “Breast cancer risks associated with missense variants in breast cancer susceptibility genes” (Genome Medicine).
- Maria Currrás, Ana Osorio: “A large case-control study helps identify a new candidate gene for breast cancer predisposition” (Cancers).
- Cristina Rodríguez-Antona: Listed in the “World Ranking of Top 2% Scientists”, 2022 edition of the Stanford University list of World Top 2% scientists.

One of the main strategic initiatives of the CNIO at present is the consolidation of a new Cancer Genomics Programme. HCGP groups will become part of the new Programme. I am confident that, under this new strategic action, the Programme will continue to grow and further develop research in the field of cancer genomics.

Lastly, I would like to take this opportunity to thank our former Head of the Familial Cancer Clinical Unit, Miguel Urioste, for his dedication and for placing the CNIO as a reference in the field of familial cancer genetic diagnostics. Thank you, Miguel, for having been a part of our CNIO community and we wish you the best on your retirement! I would also like to thank Ana Osorio and Alicia Barroso for their outstanding work on the genetic diagnosis of breast cancer over the last 20 years.

Maria A. Blasco, Director
Our Group is mainly interested in identifying genetic risk factors involved in endocrine tumour susceptibility. Through a comprehensive analysis of tumour genomic features, we have been able to propose diagnostic and prognostic markers, to identify altered pathways that could be therapeutically targeted, and to identify new major susceptibility genes.

We are also interested in defining markers associated with differences in anticancer drug response and toxicity. We are applying targeted and whole-exome next-generation sequencing to a large series of clinically well-characterised patients. The aim is to identify new therapeutic approaches to personalise cancer treatment. These efforts will collectively improve the diagnosis, prognosis, and treatment of patients.

“We identified PARP1 expression and PBRM1 mutations as predictive markers of progression free survival in patients with clear cell renal cell carcinoma. In thyroid cancer, telomere shortening leads to a reorganisation of the 5p subtelomeric region, facilitating the accumulation of alterations at the TERT-locus.”
massive sequencing technologies to advance pharmacogenomics knowledge

Next generation sequencing technologies have boosted the discovery and clinical implementation of novel markers of drug treatment response. We illustrate this with 2 contributions:

i) Generation of a comprehensive germline landscape of pharmacogenomic actionable variants contained in diagnostic exomes. In this study, we analysed data from 5,001 individuals who underwent exome sequencing for genetic diagnosis to provide population frequencies of clinically relevant pharmacogenomic alleles and to estimate the contribution of novel loss-of-function variants.

ii) Identification of PARPi expression and PBRM1 mutation as predictive biomarkers in patients with clear cell renal cell carcinoma. Through analysis of genomic, transcriptomic, and clinical data of the IMmotion151 trial in patients treated with atezolizumab plus bevacizumab or sunitinib, we found that tumour PARPi expression was a predictor of progression-free survival regardless of treatment arm, while PBRM1 mutations exerted an interaction only with sunitinib treatment (FIGURE 1).

Comprehensive molecular analysis of immortalisation hallmarks in thyroid cancer reveals new prognostic markers

Around 1 in 2,000 individuals in Spain develop thyroid cancer, a rare but deadly disease. Comprehensive molecular studies on thyroid tumours are needed to identify prognostic molecular biomarkers that will allow the early diagnosis, and thus the personalised management and follow-up, of this rare but life-threatening cancer. We extensively characterised cancer immortalisation-related alterations in a series of 106 thyroid tumours enriched with clinically-aggressive carcinomas to define disease prognostic markers. Using a custom-designed RNA-seq panel, we identified 7 telomerase holszyme-complex genes over-expressed in clinically-aggressive tumours compared to tumours from long-term-disease-free patients, with TERT and TERF denoted as independent prognostic markers by multivariate regression model analysis. Characterisation of alterations related to TERT-re-expression revealed that promoter mutations, hypermethylation and/or copy gains exclusively co-occurred in clinically-aggressive tumours. Quantitative-FISH analysis of telomere lengths showed a significant shortening in these carcinomas, which matched with a high proliferative rate measured by Ki-67 immunohistochemistry. RNA-seq data indicated that short-telomere tumours exhibit increased transcriptional activity in the 5 Mb-subtelomeric regions, site of several telomerase-complex genes. Gene upregulation enrichment was significant for specific chromosome-ends such as the 3p, where TERT is located. Co-FISH analysis of 5p-end and TERT loci showed a more relaxed chromatin configuration in short-telomere-length tumours compared to normal-telomere-length tumours. Overall, our findings suggest that telomere shortening leads to a reorganisation of the 5p subtelomeric region, facilitating the transcription and accumulation of alterations at the TERT-focus, and unveil a PARPi-based assay as a potential cytogenetic tool to predict disease prognosis in thyroid cancer.

Publications

The scope of the research carried out by the Genetic and Molecular Epidemiology Group (GMEG) ranges from the identification of aetiological agents and genetic pathways to the translation of the findings into the clinical and public health domains, focusing on bladder, pancreatic, and breast cancers.

We employ a wide variety of biomarkers, including omics data, to better characterise exposures, genetic susceptibility patterns, and cancer outcomes. While omics data provide a unique opportunity in this regard, their integration with non-omics data poses important challenges, and GMEG explores this methodological field in epidemiologic studies.

The strategic goals of the Group are to:

- Identify non-genetic and genetic factors, as well as their interactions, associated with cancer development and progression, and with its molecular/omics subphenotypes.
- Develop and apply statistical/informatics tools to model the risk and course of patients with cancer by integrating epidemiological and clinical data with omics information.
- Assess clinical and public health strategies for cancer control using newly developed biomarkers and algorithms.

“Oral, faecal, and pancreatic microbiome dysbiosis are associated with pancreatic cancer, with stool microbiota-based classifiers that predict pancreatic cancer with high accuracy and specificity.”
Research findings

In 2022, GMEG contributed to the pancreatic cancer (PC) field by proposing a faecal metagenomic classifier that identifies PC with an accuracy of 0.84 area under the receiver operating characteristic curve (AUROC) in a Spanish cohort, based on 27 species. This accuracy improves up to 0.94 AUROC when combined with CA19–9 serum marker. The classifier was validated in an independent German PC cohort (0.83 AUROC), and PC disease specificity was confirmed against 25 publicly available reference metagenomic studies populations with various health conditions (n=5792). The presence of marker taxa enriched in faecal samples (Veillonella, Streptococcus, Akkermansia) and also with tissue differential abundance in healthy and tumour pancreatic tissues (Bacteroides, Lactobacillus, Bifidobacterium) was validated by fluorescence in situ hybridisation (FIGURE 1).

The presented PIMAC-specific microbiome signatures, including links between microbial populations across tissues, provide novel microbiome-related hypotheses regarding disease aetiology, prevention, and possible therapeutic intervention. In addition, we also collaborated in elucidating that GATA4 and GATA6 cooperate to maintain the classical PC phenotype.

We further explored the immune repertoire landscape of 9522 tumour and adjacent non-tumour samples across 28 tumour types in the Cancer Genome Atlas project, and performed diversity and network analysis. We identified differences in diversity and network statistics across tumour types and subtypes and observed a trend towards increased clonality in primary tumours compared to adjacent non-tumour tissues.

Regarding bladder cancer (BC), GMEG participated in a study that delivered suggestive evidence for a multiplicative interaction between the most common class of disinfection by-products, trihalomethanes, and a bladder cancer susceptibility variant (rs907611). Furthermore, we contributed to the validation of BlaDmiR, a urine-based miRNA score for accurate bladder cancer diagnosis and follow-up.

Methodological contributions

We proposed an approach allowing Mendelian randomisation estimation in strata when avoiding collider bias (FIGURE 2). This approach constructs a new variable, the residual collider, as the residual from regression of the collider on the therapeutic instrument, and then calculates causal estimates in strata defined by quantities of the residual collider. The new approach generated unbiased estimates in all the simulation settings, and can be used to perform Mendelian randomisation studies avoiding heterogeneity among subgroups of the population while avoiding collider bias. Furthermore, GMEG continued exploring the analytic strategies and tools to integrate omics and non-omics data into the cancer risk models, and made progress in the integration of digital measurement information (radiomics and digital pathology).

Translational activities

GMEG actively supports several clinical trials of immunotherapy in BC at the methodological level. We continue to sustain the Spanish Familial PC Registry (PanGen-FAM) and the European Registry of PC (PancreOS). We chair the Spanish Alliance for Pancreatic Cancer Research (ALIPANC) to accelerate the translation of research results into the clinical and public health domains. We lead the Research Work Stream of the Pancreatic Cancer Europe (PCEC) multistakeholder platform, and we have moved ahead in increasing awareness of PC. We also contributed to the publication of the UEG position paper on pancreatic cancer.

Finally, we joined an initiative of the European Alliance for Personalised Medicine to express concerns that disrupting the current balance of the preventative public health legislation to meet objectives that are more precisely targeted could have unintended consequences in the EU, reducing rather than increasing the flow of innovative treatments for rare diseases.
Molecular Cytogenetics Unit

- **Unit Head:** Pilar Puig
- **Research Scientists:** Raúl Torres, Alejandro Alonso (since September), María Cruz Casado (until August), Alejandro Nieto (since September), Pilar Puig
- **Graduate Students:** Alejandro Alonso (Jan.-Aug.), María Cruz Casado (Feb.-Sept.), Luisa Cárdenas (July-Dec.), Ayda Real FX, Schmidt TSB, Zeller G, Wirbel J, Mais

OVERVIEW

Recurrent chromosomal rearrangements, changes in the structure of native chromosomes, are very common and well-known hallmarks of cancer. A better understanding of these cancer-causing mechanisms will lead to novel therapeutic regimens to fight cancer. The research activity of the Molecular Cytogenetics and Genome Editing Unit focuses on increasing our knowledge about the role of chromosomal rearrangements in cancer development and progression and discovering new therapeutic targets. With the combined use of CRISPR genome editing and cytogenetic technologies, we are creating models that recapitulate chromosomal and genetic cancer alterations.

The goal of the Unit is to provide CNIO and external researchers with the latest technologies used in the fields of molecular cytogenetics and genome editing. The Unit is continuously implementing and developing new technologies in those fields.

“**In 2022, we applied genome engineering approaches to reproduce and eliminate chromosome rearrangements and gene alterations. We also provided access to the latest cytogenetic and CRISPR technologies.**”

We also participate in collaborative projects with clinical and basic science investigators across the CNIO and other institutions.

RESEARCH HIGHLIGHTS

Molecular cytogenetics. The “Optimization Optical Genome Mapping” (OGM, Biomano) technique, based on the analysis of ultra-high long DNA molecules, provides a genome-wide high-resolution analysis of copy number and structural cytogenetic variations. We are optimising the use of OGM technology in our Unit, comparing it with standard techniques (e.g., karyotyping, fluorescent in situ hybridisation) using hematological and solid tumour fresh and frozen samples. We think OGM represents a promising complementary approach to existing cytogenetic techniques for the characterisation of cancer cells. OGM enables a time and cost-effective analysis allowing the identification of complex cytogenetic rearrangements, including some that are currently inaccessible to standard techniques.

Technological and translational activities. Approximately 20% of human cancers contain specific fusion oncogenes (FOs). Due to their tumour-specific expression, FOs offer unique advantages such as diagnostic and therapeutic targets.

- FO targeted diagnosis. In the clinic, conventional diagnostic techniques like qRT-PCR, FISH, or NGS are routine. But these methods require specialised machinery and personnel, are expensive, time-consuming, and involve multiple steps.
- FO targeted therapy. Many currently used treatments are non-selective, leading to severe side effects responsible for prolonged recovery and frequently resulting in relapses.

In this regard, we applied the RNA-targeting Cas13 system to selectively cleave FO transcripts. Contrary to the CRISPR/Cas9 method, RNA targeting with Cas13 results in reversible and temporally controllable alterations without modifying the DNA. Furthermore, compared to shRNAs, the Cas13 method is associated with high knockdown efficiency and no off-target effects, offering unique advantages when used for therapeutic purposes. Diagnostic methods based on Cas13 provide rapid RNA detection with attomolar sensitivity and single-base mismatch specificity.

PUBLICATIONS

AWARDS AND RECOGNITION

- Raul Torres-Ruiz has received the 2022 EISGT Young Investigator Award from the European Society for Gene and Cell Therapy (EISGT).
The Unit’s activity is divided into 2 main areas:

1. Genetic diagnosis of cancer patients, especially those at a young age, with multiple tumours or other family members with cancer. Elucidating hereditary cancer helps the physician to decide on appropriate treatment and, for risk relatives, to initiate preventive strategies if they are carriers. We work mainly with colorectal cancer/Lynch syndrome and breast/ovarian cancer, but we are also a referral unit for rare genetic-based and cancer-related diseases. We provide genetic diagnosis at the Familial Cancer Consultancy (FCCU) of the University Hospital of Fuenlabrada (UHF), but also in other hospitals in Madrid and the rest of Spain.

2. Research work on the elucidation of genetic factors related to familial breast and colorectal cancer. We focus on identifying new driver genes and clarifying their role in patient management. In addition, we are interested in genetic risk factors, prognostic markers, and genetic and molecular factors that could affect therapeutics.

FAMILIAL CANCER CLINICAL UNIT

| Maria Curria (Clinical Unit Head) |
| Ana Osorio (Research Scientist) |
| Erik Michel Marchena (PEJ, CAM) |

Technicians

| Alicia Barros (until September), Victoria Ferrandez (TS), Verónica García (TS), Mónica González Nune, Fátima Mercadillo |

Master’s Student

| Milton Eduardo Salazar (Jan.–Sep.) (Universidad Complutense de Madrid, Spain) |

Graduate Student

| Ana Osorio (until September) |

Research Highlights

Clinical and diagnostic activity. The catalogue of genes has been updated and expanded to tumours that were not previously covered. 729 patients visited our consultancy at the UHF, and 1884 genetic studies were carried out in the FCCU laboratory.

Elucidating new breast cancer (BC) genes. We found a statistically significant association between loss-of-function variants in the RECOL5 gene and BC risk in almost 2000 index cases of Spanish BC families, supporting its role as a novel moderate-risk BC gene.

Understanding the role of new variants in moderate-risk BC genes. Through a mutational analysis of the BARH1 gene, in a cohort of 1946 Spanish patients with BC using NGS, we saw that the prevalence and spectrum of BARH1 mutations could vary between different regions of Spain and highlighted the relevance of analysing copy number variations.

New BC therapeutic approaches. Osorio was involved in the discovery that TH447, an inhibitor of 8-oxoguanine DNA glycosylase 1 (OGG1), increases sensitivity to the PARP inhibitor Olaparib, especially in the context of BRCA1 deficiency. She was also involved in the description of TH0785, which increases OGG1 recruitment and repair of oxidative DNA damage that may have therapeutic applications.

Contributions to the diagnosis and clinical follow-up of PTEN hamartoma tumour syndrome (PHTS). In the largest study performed in the Spanish population with clinical features of PHTS (n = 145), we concluded that to improve clinical diagnosis we should focus on macrocephaly, mucocutaneous lesions, obesity, and gastrointestinal polyposis. We pointed out the importance of regular weight control and of considering cancer screening at an earlier age. In addition, we participated in an extensive functional characterisation of variants of unknown significance identified in patients with PHTS.

Mosaic variagated aneuploidy (MVA). Urioste was involved in the description of the first germline biallelic mutation in MADIL1 as a novel cause of aneuploidy in an individual with no intellectual disability and an unprecedented number of neoplasias, including 5 malignant tumours before the age of 1.

SELECTED PUBLICATIONS

- Milton Eduardo Salazar (Jan.–Sep.) (Universidad Complutense de Madrid, Spain)

FIGURE 1 Biallelic loss-of-function mutations in MADH1L (A). MADH1L mutations in the proband. (B) Schematic representation of the MADH1L protein and the mutations found in the proband. NTD, N-terminal domain; MIM, MADH2 interaction motif. (C) Predicted structure of MAD1 and the position of the G366 and E628 mutated nucleotides. (D) Pedigree of the family. (E) Mutations in the MAD1L1 protein and the mutations found in the proband. NTD, N-terminal domain; MIM, MADH2 interaction motif.
In the Unit, we offer researchers access to state-of-the-art methods for high-throughput genotyping and sequencing for a wide range of applications. We currently have available different genotyping and sequencing platforms to be used according to the scale of analysis required, and we are continuously developing new techniques to cover all research project needs. The research carried out in the Unit is based on identifying genetic risk factors of breast cancer susceptibility and treatment response. Our main goals are to: i) improve individual breast cancer risk assessment, ii) develop novel strategies for breast cancer early detection, and iii) provide cancer patients more accurate and safe treatment.

RESEARCH HIGHLIGHTS

Breast cancer risks associated with missense variants in breast cancer susceptibility genes. This study is the result of the European project BRIDGES (Breast Cancer Risk after Diagnostic Gene Sequencing), in which the Unit participates. Protein truncating variants in ATM, BRCAL, BRC2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. We analysed 59,639 breast cancer cases and 53,165 controls for missense variants in these 5 breast cancer genes, evaluating the risk according to *in silico* prediction-of-deleteriousness algorithms, functional protein domain, and frequency. For ATM, BRCAL, and BRC2, data were compatible with small subsets (7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI 1.47-2.08) than CHEK2 protein truncating variants. Our results could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility (Dorling *et al.* 2022).

Pathology of tumours associated with pathogenic germine variants in 9 breast cancer susceptibility genes. The main objective of this study was to determine the distribution of intrinsic subtypes in the 9 confirmed breast cancer genes — *ATM, BARD1, BRCAL, BRC2, CHEK2, PALB2, RAD51C, RAD51D,* and *TP53* — harbouring rare truncating variants and likely pathogenic missense variants associated with increased breast cancer risk. For this purpose, we used data from the BRIDGES project, including 42,680 patients and 46,387 control participants. The results suggested that variants in the 9 breast cancer risk genes are generally associated with triple-negative and/or high-grade disease. Together, the 9 genes were associated with 27.3% of triple-negative tumours in women 40 years or younger. (Breast Cancer Association Consortium *et al.* 2022).

Novel genes and sex differences in COVID-19 severity. The study is the result of the Spanish COalition to Unlock Research on host GEnetics on COVID-19 (SCOURGE) consortium, in which the Unit participates. The consortium was launched in May 2020 to find biomarkers of evolution and prognosis that can have an immediate impact on the clinical management and therapeutic decisions in SARS-CoV-2 infections. We conducted a genome-wide study of COVID-19 with patients recruited in Spain from 34 centres in 25 cities. The discovery stage of the study comprised up to 9,371 COVID-19 positive cases and 5,943 population controls. Replication was pursued in an additional 1,598 COVID-19 cases and 1,068 population controls, and in other studies from the Host Genetics Initiative. When we performed sex-disaggregated genome-wide association studies for COVID-19 hospitalisation, genome-wide significance (*P < 5 × 10 -8*) was crossed for variants in 1p31.31 and 21q22.11 loci only among males (*P = 1.3 × 10 -8* and *P = 8.1 × 10 -5*, respectively), and for variants in 9q21.32 near TLE1 only among females (*P = 4.4 × 10 -8*). The results in the overall analysis revealed 2 novel risk loci in 9p21.33 and 19q13.12, associated with *ARHGAP32* (*P = 1.3 × 10 -8*), respectively. In summary, new candidate variants for COVID-19 severity and evidence supporting genetic disparities among sexes are provided (Cruz *et al.* 2022).