The scope of the research carried out by the Genetic and Molecular Epidemiology Group (GMEG) ranges from the identification of aetiological agents and genetic pathways to the translation of the findings into the clinical and public health domains, focusing on bladder, pancreatic, and breast cancers.

We employ a wide variety of biomarkers, including omics data, to better characterise exposures, genetic susceptibility patterns, and cancer outcomes. While omics data provide a unique opportunity in this regard, their integration with non-omics data poses important challenges, and GMEG explores this methodological field in epidemiologic studies.

The strategic goals of the Group are to:

- Identify non-genetic and genetic factors, as well as their interactions, associated with cancer development and progression, and with its molecular/omics subphenotypes.
- Develop and apply statistical/informatics tools to model the risk and course of patients with cancer by integrating epidemiological and clinical data with omics information.
- Assess clinical and public health strategies for cancer control using newly developed biomarkers and algorithms.

“Oral, faecal, and pancreatic microbiome dysbiosis are associated with pancreatic cancer, with stool microbiota-based classifiers that predict pancreatic cancer with high accuracy and specificity.”
Research findings

In 2022, GMEG contributed to the pancreatic cancer (PC) field by proposing a faecal metagenomic classifier that identifies PC with an accuracy of 98.4% under the receiver operating characteristic curve (AUROC) in a Spanish cohort, based on 27 species. This accuracy improves up to 99.4% AUROC when combined with CA19-9 serum marker. The classifier was validated in an independent German PC cohort (0.83 AUROC), and PC disease specificity was confirmed against 25 publicly available metagenomic study populations with various health conditions (n=5792). The presence of marker taxa enriched in faecal samples (Veillonella, Streptococcus, Akkermansia) and also with differential abundance in healthy and tumour pancreatic tissues (Bacteroides, Lactobacillus, Bifidobacterium) was validated by fluorescence in situ hybridisation (FIGURE 1). The presented PIMAC-specific microbiome signatures, including links between microbial populations across tissues, provide novel microbiome-related hypotheses regarding disease aetiology, prevention, and possible therapeutic intervention. In addition, we also collaborated in elucidating that GATA4 and GATA6 expression is associated with colorectal cancer susceptibility variant (rs907611). Furthermore, we contributed to the validation of BlaDiMiR, a urine-based mRNA signature for accurate bladder cancer diagnosis and follow-up.

Methodological contributions

We proposed an approach allowing Mendelian randomisation estimation in strata of the population while avoiding collider bias (FIGURE 2). This approach constructs a new variable, the residual collider, as the residual from regression of the outcome on the genetic instrument, and then calculates causal effects in strata defined by quantiles of the residual collider. The new approach generated unbiased estimates in all the simulation settings, and can be used to perform Mendelian randomisation studies in which avoiding estimation in strata of the population while avoiding collider bias. Furthermore, GMEG continued exploring the analytic strategies and tools to integrate omics and non-omics data into the cancer risk models, and made progress in the integration of medical image information (radiomics and digital pathology).

Translational activities

GMEG actively supports several clinical trials of immunotherapy in BC at the methodological level. We continue to sustain the Spanish Familial PC Registry (PanGen-FAM) and the European Registry of PC (PancroOS). We chair the Spanish Alliance for Pancreatic Cancer Research (ALIPANC) to accelerate the translation of research results into the clinical and public health domains. We lead the Research Work Stream of the Pancreatic Cancer Europe (PCE) multistakeholder platform, and we have moved ahead in increasing awareness of PC. We also contributed to the publication of the UER position paper on pancreatic cancer. Finally, we joined an initiative of the European Alliance for Personalised Medicine to express concerns that disturbing the current balance of the preventative healthcare legislation to meet PC-specific goals are more precisely targeted could have unintended consequences in the EU, reducing rather than increasing the flow of innovative treatments for rare diseases.

References