During 2020, our Group was recognised with the 1st CRIS Excellence in Research Award. This award will help, among other aspects, to continue our work on understanding gene alterations that could be synergistic with DNA repair defects promoting oncogenesis and prostate cancer progression, and therefore to be exploited as potential new targets. For example, at the 2020 American Society of Clinical Oncology meeting, we presented the results of the PROBEPAR-Askudy, in which we reported that BRCA2 defects are frequently associated to RBBi loss and/or MYC amplification, and that their combination is associated to poor outcomes. We also advanced in our understanding of ATM defects in prostate cancer. As part of the thesis project of our student Ylenia Cendón, we established that ATM may contribute or not to cancer oncogenesis and progression depending on the genetic background (i.e., it may be synergetic in an RBBi suppression or MYC overexpression context, and the opposite in a PTEN loss context). Our aim is to publish these results during 2021. In addition, the group actively participated in several clinical trials, and this included our participation in the steering committees of large phase II trials. We particularly contributed to the approval of olaparib as the first targeted treatment for precision medicine in metastatic prostate cancer. Like everyone around the world, we were also affected by the Covid-19 pandemic. Our research efforts, especially in the clinic, had to be slowed down as doctors in our teams and other associated researchers had to focus on delivering patient care. Still, we also tried to contribute through international collaborations to understanding the role of TMPRSS2, a key AR-regulated gene, which could be involved in SARS-CoV-2’s entry into the cell.

OVERVIEW

Prostate cancer (PrCa) is the most common cancer diagnosis in men and, despite its potential to be cured in almost 90% of early stages, its metastatic spread causes about 6,000 deaths every year in Spain alone, whilst in the US over 30,000 men succumb to the disease each year. During the last few years, our Group has focused precisely on the development of new methods to identify and treat the most aggressive and lethal forms of prostate cancer, in particular, over the last 8 years, our group has made significant contributions in:

- Understanding the implication of gene alterations leading to DNA repair deficiency in this disease.
- Developing new treatments for prostate cancer.

Our work has been widely recognised with several highly cited publications in top journals in our field, including _The New England Journal of Medicine, The Lancet Oncology, The Journal of Clinical Oncology, European Urology, Annals of Oncology_, and many others.

PUBLICATIONS

AWARDS AND RECOGNITION

- David Olmos: *Member of the Board of Directors, European Organization for Research and Treatment of Cancer (EORTC)*.
- Diana Areceda: *Impact Award (Partnership) US Department of Defense, Congressionally Directed Medical Research Programs*.
- CRIS Excellence in Research Award, Spain.
- Elena Castro: *Faculty Board Member, EPPO Preceptorships in PCa*.

RESEARCH HIGHLIGHTS

During 2020, our Group was recognised with the 1st CRIS Excellence in Research Award. This award will help, among other aspects, to continue our work on understanding gene alterations that could be synergistic with DNA repair defects promoting oncogenesis and prostate cancer progression, and therefore to be exploited as potential new targets. For example, at the 2020 American Society of Clinical Oncology meeting, we presented the results of the PROBEPAR-Askudy, in which we reported that BRCA2 defects are frequently associated to RBBi loss and/or MYC amplification, and that their combination is associated to poor outcomes. We also advanced in our understanding of ATM defects in prostate cancer. As part of the thesis project of our student Ylenia Cendón, we established that ATM may contribute or not to cancer oncogenesis and progression depending on the genetic background (i.e., it may be synergetic in an RBBi suppression or MYC overexpression context, and the opposite in a PTEN loss context). Our aim is to publish these results during 2021. In addition, the group actively participated in several clinical trials, and this included our participation in the steering committees of large phase II trials. We particularly contributed to the approval of olaparib as the first targeted treatment for precision medicine in metastatic prostate cancer. Like everyone around the world, we were also affected by the Covid-19 pandemic. Our research efforts, especially in the clinic, had to be slowed down as doctors in our teams and other associated researchers had to focus on delivering patient care. Still, we also tried to contribute through international collaborations to understanding the role of TMPRSS2, a key AR-regulated gene, which could be involved in SARS-CoV-2’s entry into the cell.