During 2018, we have set up the different experimental systems and techniques needed for the adequate functioning of the lab and have established 3 main research lines:

→ Structural and molecular determinants of RET catalytic activity and signalling, both in cis by intrinsic elements and in trans by effector kinases and adaptor proteins.
→ Structure-function studies of RET oncogenic variants, i.e. point mutations targeting the kinase domain and oncogenic fusions generated by DNA-rearrangements.
→ Structural and molecular drug-discovery of (allosteric) RET inhibitors.

Furthermore, upon invitation by the journal *Endocrine-Related Cancer*, we contributed to a special issue to commemorate the 25th anniversary of the discovery of the RET proto-oncogene as the cause of Multiple Endocrine Neoplasia type 2 (see publication list).

OVERVIEW

Rational and precise targeting of oncogene driven signalling is a crucial and yet outstanding challenge in cancer research today. Understanding the structural and molecular bases of oncogene activation and signalling is key for the design and development of better therapeutics. Our research focuses on the structural and molecular understanding of protein kinase function: how protein kinases are activated and regulated by post-translational modifications and allosteric inputs, and how they assemble into macromolecular protein complexes to transmit signals inside the cell. We put a special emphasis on how these mechanisms are corrupted in cancer and disease due to oncogenic mutations and other oncogenic insults. Crucially, such atomic and molecular information can be translated into the design and development of more potent and specific protein kinase inhibitors, eventually leading to more effective drugs for the treatment of cancer patients.

“Understanding protein kinase function and inhibition for better cancer therapeutics.”

PUBLICATIONS